Modeling Gene Expression from Microarray Expression Data with State-Space Equations
نویسندگان
چکیده
We describe a new method to model gene expression from time-course gene expression data. The modelling is in terms of state-space descriptions of linear systems. A cell can be considered to be a system where the behaviours (responses) of the cell depend completely on the current internal state plus any external inputs. The gene expression levels in the cell provide information about the behaviours of the cell. In previously proposed methods, genes were viewed as internal state variables of a cellular system and their expression levels were the values of the intemal state variables. This viewpoint has suffered from the underestimation of the model parameters. Instead, we view genes as the observation variables, whose expression values depend on the current intemal state variables and any external input. Factor analysis is used to identify the internal state variables, and Bayesian Information Criterion (BIC) is used to determine the number of the internal state variables. By building dynamic equations of the internal state variables and the relationships between the internal state variables and the observation variables (gene expression profiles), we get state-space descriptions of gene expression model. In the present method, model parameters may be unambiguously identified from time-course gene expression data. We apply the method to two time-course gene expression datasets to illustrate it.
منابع مشابه
Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2004